
University Paris-Dauphine
Lamsade

Thesis submitted to the University of Paris-Dauphine
for the degree of Master of Science

in Computer Science

Thesis advisor : Prof. Tristan CAZENAVE

Some Improvements for Monte-Carlo Tree Search,
Game Description Language Compilation, Score Bounds

and Transpositions

Abdallah SAFFIDINE
<abdallah.saffidine@gmail.com>

Paris, Septembre 2010

Abstract

Game Automatons (GAs) are a model of sequential finite multiplayer
games. Monte-Carlo Tree Search (MCTS) is a recent framework for
building an Artificial Intelligence (AI) for board game playing requiring
potentially no domain specific knowledge. Our work revolves around
the application of MCTS to GAs. This thesis contributes three different
main parts. We implement a forward chaining compiler for the General
Game Playing (GGP) problem; the input is translated from the declarative
Game Description Language (GDL) to a GA that can be interfaced with
a playing program. We enhance MCTS with an algorithm to keep track
of admissible bounds that allows to solve certain positions and improves
the playing strength in general. We study how transpositions can be
used in MCTS, in particular, we propose a parametric adaptation of the
Upper Confidence bound for Trees (UCT) algorithm to the Direct Acyclic
Graph (DAG) case.

Résumé

Les automates de jeux (GA) constituent un modèle pour les jeux
multijoueurs séquentiels. La recherche arborescente Monte-Carlo (MCTS)
est une technique récente permettant de construire des intelligences
artificielles (AI) pour des jeux, potentiellement sans faire appel à des con-
naissances spécifiques au domaine. Ce travail s’intéresse à l’application de
MCTS au GA. Il apporte trois contributions distinctes. Nous développons
un compilateur pour le problème GGP à base de chaînage avant ; les
règles d’un jeu donné sont traduites depuis le langage déclaratif GDL
vers un GA qui peut être interfacé avec un programme de jeu. Nous
augmentons MCTS d’un algorithme permettant de tenir compte de bornes
d’admissibilité ; il permet de résoudre certaines positions et améliore
globalement le niveau de jeu. Nous étudions comment tenir compte des
transpositions dans MCTS, nous proposons en particulier une adaptation
paramétrique de l’algorithm UCT au cas des graphes orientés acycliques
DAG.

Contents

Contents ii

List of Figures iv

List of Tables v

List of Algorithms vi

List of Acronyms vii

Acknowledgements ix

1 Introduction 1
1.1 Motivation . 1
1.2 Topics addressed in this thesis 2
1.3 Reading guide . 3

2 Premilinaries 5
2.1 Game Automaton . 5
2.2 Solving a game . 11
2.3 Monte-Carlo Tree Search . 12
2.4 Restrictions for this work . 15

3 A compiler for the Game Description Language 17
3.1 Introduction . 17
3.2 Game Description Language . 18
3.3 Intermediate languages . 20
3.4 Discussion and future works . 24

4 Bounded MCTS 27
4.1 Introduction . 27
4.2 Monte-Carlo tree search solver 28
4.3 Integration of score bounds in MCTS 28

ii

Contents

4.4 Why Seki and Semeai are hard for MCTS 32
4.5 Experimental Results . 35
4.6 Conclusion and Future Works 38

5 Transpositions in MCTS 39
5.1 Introduction . 39
5.2 Motivation . 41
5.3 Possible Adaptations of UCT to Transpositions 42
5.4 Experimental results . 48
5.5 Conclusion and Future Work . 49

Bibliography 51

iii

List of Figures

1.1 GDL compiler interactions . 3

2.1 Nim Game Automaton . 7
2.2 Unfolding for Nim . 8

3.1 Program transformations . 21

4.1 Example of a cut . 32
4.2 Bound based selection . 33
4.3 Two Semeais . 33
4.4 Test seki . 35

5.1 Storing on nodes or edges . 43
5.2 Update-all counter-example . 44
5.3 Local information is not enough . 45
5.4 LeftRight results . 48
5.5 Hex results 1 . 50
5.6 Hex results 2 . 50

iv

List of Tables

3.1 Predicates in GDL . 19

4.1 Wins for random play always in the Semeai 34
4.2 Wins for random play 80% outside the Semeai 34
4.3 Results for Sekis with two shared liberties 36
4.4 Playouts for Sekis . 36
4.5 Playouts for Sekis, bounds, pruning, no bias 37
4.6 Playouts for Sekis, bounds, pruning, bias 37
4.7 Comparison of solvers for various sizes of Connect Four 38

v

List of Algorithms

3.1 Fixpoint decompose . 23
3.2 Decompose step . 23
4.1 prop-pess : Propagating pessimistic bounds 30
4.2 prop-opti : Propagating optimistic bounds 31

vi

List of Acronyms

AI Artificial Intelligence

AMAF All Moves as First

AST Abstract Syntax Tree

CGT Combinatorial Game Theory

DAG Direct Acyclic Graph

DNF Disjunctive Normal Form

EFG Extensive-form Game

GA Game Automaton

GDL Game Description Language

GGP General Game Playing

IIL Inverted Intermediate Language

KIF Knowledge Interchange Format

LOA Lines of Action

MCTS Monte-Carlo Tree Search

RAVE Rapid Action Value Estimation

UCT Upper Confidence bound for Trees

vii

Acknowledgements

I would like to thank my thesis advisor Tristan Cazenave without whom this
work would not have been possible. He provided me with unlimited support,
help and guidance.

I am also very grateful to all those who shared insightful thoughts about
Games, Machine Learning, Compiling or Game Theory, including but not
limited to Jean Méhat, Yann Chevaleyre, Bruno De Fraine and Jérôme Lang.

The financial support of the École Normale Supérieure de Lyon is gratefully
acknowledged.

ix

1 Introduction

1.1 Motivation

Game playing is often depicted [Sch01] as a good testbed for AI techniques.
The task of building an intelligent player should be a lot easier than building
an intelligent general agent. The world of a game is indeed much simpler
than the physical world : for instance the goal and the dynamics and the
possible interactions of a game are well defined and are known to the players
which is not always the case in the real world. Still, interesting games are
usually complex. An intelligent player is expected to take a decision without
an exhaustive search of the possible outcomes, not to repeat the same mistakes
again and again, to be able to play well different games. Moreover, some
games might involve chance (backgammon), hidden information (phantom go)
or both (most card games). Thus, building an intelligent player is not trivial
and has motivated decades of active research over the globe [Sch01].

Researchers believed in the 50s that if a computer could beat the world
Chess champion then general AI would be achieved. Sixty years later, the
Machine plays consistently better than Humans on several games (chess,
backgammon, scrabble[Hsu02, She02]), not so easy games have been solved
(Four-in-a-row, Gomoku and Checkers among others [All94]). Some tech-
niques developed in the game playing community spanned to other domains
[MRVP09], but general AI is still out of sight. Worse, no good general player
has been developed yet.

Chess playing programs1 are based upon a lot of handcrafted Chess knowl-
edge like an opening book, an endgame database as well as an evaluation
function fitted to chess features like being a pawn up, controlling the center
etc. Therefore Chess programs have not a clue about, say, Checkers.

To try to address this deficiency, the GGP competition was created in 2005
[GL05]. The competitors are asked to play many different games that are new
to them. To put it more precisely, at the beginning of a match, each player
receives the rules of the game to be played in a formal language, as well as the
role to impersonate. Hence, it is challenging for the programmer to put in any

1Chess programs will be used as a running example

1

1. INTRODUCTION

game specific knowledge, for the precise game is not known before hand.
MCTS is a new alternative to the combination of the minimax algorithm

with an evaluation function. Since it is based on random simulations, it offers
the possibility to build a playing program with almost no domains specific
knowledge. It now constitutes the state of the art of playing programs in
many games such as Go [Cou06, GS08], GGP [FB08] or Hex [CS09]. MCTS
algorithms have also been very successfully applied to games with incomplete
information such as Phantom Go [Caz06], or to puzzles [Caz07, SWvdH+08].

MCTS has also been used with an evaluation function instead of ran-
dom playouts, in games such as Amazons [Lor08] and Lines of Action (LOA)
[WB09].

1.2 Topics addressed in this thesis

Game Model

We develop a formal model for games in which a game is represented by a
so-called GA. This model was already presented in [GL05]. It is quite general,
as it can be used to represent a variety of kind of games such as multiplayer
games, puzzles, zero-sum games, non-zero sum games, simultaneous and
sequential games. Yet, this model can be much more compact than Extensive-
form Game (EFG) for instance.

Although several game models already exists. The proposed representation
strives to help defining general algorithms in a formal way. It is hoped that
eventually game specific algorithms can be expressed on a GA through the
use of hypotheses on the GA. Given an algorithm working on a specific game,
expressing this algorithm on a restricted class of GAs may enable the algorithm
to be used on slightly different games. Trying to identify the hypotheses on a
GA for the algorithm to work would shed light on both the algorithm and the
first game it was applied to.

To test the different algorithms developed in the course of this work, we
devised a compiler transforming a game written in the GDL [LHG06] to a GA
that could be interfaced with our algorithm as depicted in figure 1.1 (Figure 3.1
gives more details). Our algorithms could thus be tested on the many different
games that were presented in the previous GGP competitions.

Monte-Carlo Tree Search

MCTS Solver was presented in [WBS08] to prove that some position is lost or
won. We extend the MCTS algorithm to take score bounds into account. Score
bounds are admissibility bounds on the outcome that can be reached in a given
node. These bounds are conservative and enable the MCTS to prove the value
of some positions.

2

1.3. Reading guide

User

Output compilation

linking

interfacing

Source file

compilation

Executable

GDL compiler

OCaml compiler

Playing program

GA

GDL rulesheet

Figure 1.1: Interactions between User and the GDL compiler.

Transpositions occur when the same position can be reached through
different move sequences. Taking transpositions into account has drastically
improved the playing strength of minimax based AIs but it is not clear how they
should be used in MCTS. Introducing transpositions in the MCTS framework
has been first described in [CBK08]. We provide a parametric algorithm that
generalize previous works on transpositions and MCTS and improves playing
strength on the realized tests.

1.3 Reading guide

Section 2 contains general background information about the model used 2.1
as well as the MCTS algorithm 2.3. A reader familiar with game models or

3

1. INTRODUCTION

not interested in formal definitions can safely skip section 2.1 and section
2.2. The basics of the MCTS are recalled in section 2.3. The sections 3, 4
and 5 are independent one from another and can be read in any order. The
section 3 is self-contained and requires no MCTS knowledge. Little game
knowledge is needed for this section but a familiarity with the GGP problem
can naturally give further insight. Section 4 and section 5 can also directly be
read by someone familiar with the MCTS framework.

4

2 Premilinaries

Contents
2.1 Game Automaton . 5

Definition . 5

Reduction . 7

Generality and limitations of the model 9

Other game models . 10

2.2 Solving a game . 11

Definitions . 11

Admissible bounds . 12

2.3 Monte-Carlo Tree Search 12

Random playouts . 12

Descent and update . 12

Selection . 13

2.4 Restrictions for this work 15

Kind of games considered 15

MCTS . 15

Admissible bounds . 15

2.1 Game Automaton

Definition

We first present a general and abstract way of defining games to encompass
puzzles and multiplayer game, be it turn-taking or simultaneous. Informally, a
Game Automaton is a kind of automaton with an initial state and at least one
final state. The outgoing transitions in a state are the possible moves in this
state. The set of outgoing transitions in a state is the cross-product of the legal
moves of each player in the state (non turn players play a no-operation move).
Final states are labelled with an outcome and players define an preference
relation on the possible outcomes.

5

2. PREMILINARIES

In the following, for a function f taking several arguments and one argu-
ment a, we denote by fa the partial application of f to a.

Formally, let P = {p1, . . . , pk} 6= ∅ be a non empty finite set of players or
agents, let O be a set of outcomes, for each player p, ≤p is a total preorder on
O. That is, for each possible two outcomes o1 and o2 and for each player p,
either p prefers o1 over o2 or p prefers o1 over o2 or p is indifferent between
both outcomes. Let Σ be a set of states, let i ∈ Σ be the initial state and F ⊂ Σ
be the final states, F 6= ∅. Each final state f ∈ F is labelled with a unique
outcome o(f) ∈ O. For each player p, we define the possible moves of p as
Mp. For each state s and each player p, we define the legal moves of p in s as
L(s, p) ⊂ Mp. The transition function t maps the conjunction of a state and
legal moves from all players to another state : ∀s, ts : Ls(p1)×. . .×Ls(pk)→ Σ.
We further ensure the following restrictions. If a state is final then no player
has any legal move : ∀f ∈ F,∀p ∈ P,L(f, p) = ∅, otherwise every player has
at least one legal move : ∀s /∈ F,∀p ∈ P,L(s, p) 6= ∅. We call Game Automaton
the tuple (Σ, i, F, P,M, t,O, o).

We call underlying graph of such a game the directed graph {Σ, T}, such
that there is an edge between two states if and only if it is possible to go from
one state to the other with the transition function : ∀s1, s2 ∈ Σ, (s1, s2) ∈ T ⇔
∃m1 ∈ Mp1 , . . . ,mk ∈ Mpk , ts1(m1, . . . ,mk) = s2. For each states s1, s2, we
say that s2 is a successor of s1 and s1 is a predecessor of s2 if (s1, s2) ∈ E. We
say that s′ is reachable from s if there is a sequence of states s0, s1, . . . , sn such
that s0 = s, sn = s′ and si+1 is a successor of si for each i ∈ [0, n− 1]. We may
also use the word child (resp. parent) for successor (resp. predecessor). If s′ is
reachable from s, we may say that s is an ancestor of s′.

From now on, we will only consider games with a finite acyclic underlying
graph.

It can be useful to consider the unfolding game Γ† of a game Γ. Γ† is
defined such that its underlying graph is the unfolding of the underlying graph
of Γ. The players, the moves and outcomes are not changed.

A turn taking game is a game in which for every state, at most one player
has more than one legal move. The player having more than one move is said
to be in turn. We call first player the player in turn in the initial state i. We also
use sequential as a synonym for turn taking.

A puzzle is a game with one player : #P = 1. With those definitions,
puzzles are turn taking games with only one player.

A utility game is a game in which the outcomes can be expressed as real
vectors with one dimension for each player : O ⊂ Rk. For an outcome
o = (op1 , . . . , opk) ∈ O and a player pj , we write o(pj) for the jth component of
o that corresponds to pj . o(pj) = opj . A constant sum game is a utility game in
which the sum of the components of each vector of O is constant, that is, there
exist a real number ω such that for all outcome o ∈ O, o(p1) + . . .+ o(pk) = ω.
A zero sum game is a constant sum game in which the constant is equal to zero
ω = 0.

6

2.1. Game Automaton

1

2

3

2

3

3

2

1

1

3

1

1

1

2

2

2

1

1

1

4

A

3

2

B

1

2

35

Figure 2.1: Nim Game Automaton

Reduction

Principle

As the Nim GAs 2.1 and 2.2 show, there can be many GA representing the same
game. It is possible to specify formally the relation between GAs representing
the same game. A GA is constituted of a labelled state transition system. It
is therefor natural to extend the concept of bisimilarity from labelled state
transition systems to GAs.

Let Γ = (Σ, i, F, P,M, t,O, o) and Γ′ = (Σ′, i′, F ′, P,M, t′,O′, o′) be two
GA. We say that Γ and Γ′ are bisimilar if the corresponding labelled state
transition systems are bisimilar : (Σ,M, t) ∼ (Σ′,M, t′), the initial states
are equivalent i ∼ i′ and equivalent final states have the same outcomes
∀p, p′, p ∼ p′ =⇒ o(p) = o′(p′). Just as with labelled state transition systems,
bisimilarity for GAs is an equivalence relation.

For instance, if Γ is a game and Γ′ is its unfolding, then Γ and Γ′ are
bisimilar. This means that any game theoretic result obtained on Γ′ can be
carried over to Γ without trouble. This assumption is at the base of tree
searches algorithms.

Using the model

When a designing an AI for a given game, using domain specific knowledge is
usually a condition to obtain decent results. The way this knowledge is used is

7

2. PREMILINARIES

1

1

1

1

3

1

2

2

1

1

1

3

1

1

2

2

2

1

1

2

1

1

2

2

3

1

3

1

B

1

A

B

3

A1

2

B

1

A

2

2

B

2

B

B

15

A

4

A

3

A

1

B

1

Figure 2.2: Unfolding for Nim

8

2.1. Game Automaton

however often transferable to other games. Formalizing the domain specific
knowledge required in the proposed model make recognizing on which specific
property of the game enable the usage of this knowledge. This can in turn help
finding similar domain knowledge in games fulfilling the same hypothesis.

Another goal of this model is to give a framework for proving properties
of general algorithms. By definition a general algorithm should be applicable
to many different games. When considering a game expressed in this model,
game specificities will not clutter the demonstration of the validity of the
theorem.

Paranoid reduction

The well known minimax algorithm is a basic game tree search technique
[RN02, Chapter 6] for turn taking games. It explore a partial game tree to a
fixed depth in a depth first manner. The number of nodes to be explored is
usually exponential in the depth of the search and some of the explored nodes
will actually not contribute to the final result. The alpha-beta algorithm is a
conservative improvement of minimax the avoid exploring some unnecessary
nodes. However alpha-beta is based on the game being two-player and zero-
sum. Several extensions of alpha-beta try to deal with the multiplayer case
[Stu02]. The paranoid algorithm is such an extension and we will specify it
using GAs.

Given a multiplayer turn taking game Γ = (Σ, i, F, P,M, t,O, o), the para-
noid reduction of Γ for the player p ∈ P is (Σ, i, F, {p,−p},M ′, t′,O, o) where
−p is a new player and M ′ and t′ reflect the changing of players. M ′ and t′

are changed such that the state transitions possible with t′ are exactly those
possible with t but instead of calling to any player outside p in P , a call is
made to −p. The preferences of the new player −p are exactly the opposites
of the preferences of p : o1 ≤p o2 =⇒ o2 ≤−p o1. Thus, the adapted game is
a zero sum game and the opponents are merged into a single opponent. The
alpha-beta can then be used on this adapted game and the resulting move
choice for p will be conveyed back to the original game.

Generality and limitations of the model

Zero sum turn taking games encompass many usual board games such as Chess,
Go, Hex, or even Chinese checkers. Using a random player to simulate the
dice rolls enables us to represent backgammon and other games that involve
chance[QC07].

Puzzles games encompass Same Game, 9-tiles etc. They also encompass
problems such as travelling salesman in which a state would represent the
history of the cities visited so far, and the outcome would be the distance
travelled given a history of visited cities.

9

2. PREMILINARIES

Classic games of game theory such as the Prisoner’s Dilemma, Rock-paper-
scissors can also be directly represented using GA. Indeed, Normal Form Games
with complete information can directly be represented through GA.

Games with incomplete information is a very interesting class of games
but it lies out of the scope of this thesis. The definition of GA can probably be
extended to include such games, drawing inspiration from EFG with incomplete
information.

Other game models

Relation to Combinatorial Game Theory (CGT)

Combinatorial Game Theory is another model tool for two players games. One
of the main differences between CGT and GA theory is their scope. GA strives
for more generality than CGT and can indeed model puzzles, multiplayer
games as well as non sequential games or non zero sum games.

Relation to EFG

GAs are very similar to EFGs. They have the same expressive power, that is
every problem that can be represented by a GA can be represented in extensive-
form and every game that can be represented in extensive can be represented
by a GA. Both representations are based on directed graphs. Extensive-form is
based on trees while GA is based on acyclic graphs. Therefore the conversion of
an extensive-form game to a corresponding GA is straightforward. The reverse
conversion can be more involved because one needs to obtain the unfolding
graph of the GA.

Despite this equivalence in expressivity, GAs can sometimes be much more
compact. In the most extreme cases, the tree in extensive-form is exponentially
bigger than the underlying graph of the GA. A concrete albeit artificial example
is given in section 5.4 with the game LeftRight. Another example is given with
the Nim game[Bou01], compare the number of nodes of figure 2.1 and 2.2.
Having a compact representation often allows for more efficient algorithms as
will be shown in section 5.

Another reason to be interested in GA beyond the potential efficiency of
algorithm is that it allows to reflect naturally real game situations in a more
satisfactory way than extensive-form games. A huge number of board game
situations depend only on the position set on the board and not on the previous
moves1. The GA representation of such games can potentially keep the one
to one relationship between board states and states of the automaton while
the board states would be represented by many nodes in the corresponding
extensive-form game depending on the previous moves.

1for counter-examples, think about castling or the 50-moves rule in Chess or the ko rule in
Go

10

2.2. Solving a game

2.2 Solving a game

Definitions

Let Γ = (Σ, i, F, P,M, t,O, o) be a game. A pure strategy σp for player p ∈ P
is a mapping from each state of s ∈ Σ to a legal move for p in s : σp : Σ →
Mp, σp(s) ∈ Ls(p). A strategy profile σ is a tuple containing a strategy for every
player : σ = (σp1 , . . . , σpk).

Given a strategy profile σ, we define the game result of σ to be the outcome
in the final state obtained by the following procedure. Start in the initial state
i, move from a state s to the state ts(σp1(s), . . . , σpk(s))) until a final state is
reached.

Let σ1 and σ2 be two strategies for the player pj in the game G. We say
that σ1 dominate σ2 if for every set of strategies σ used by the other players,
the game result of the strategy profile consisting in joining σ with σ1 is better
than the game result of joining σ with σ2 according to pj . The domination
relation is a preorder for the set of strategies of a given player. We call maximal
elements of the domination relation dominant strategies.

If the preference of every player is a total order and if the game is sequential,
then the domination relation is a total preorder for every player. In this case,
we call dominant strategies optimal strategies. Taking an optimal strategy for
every player always lead to the same game result which we call the value of
the game.

Types of solving

The subgame of Γ starting at s ∈ Σ is the following GA : (Σ′, s, F ′, P,M, t′,O, o)
where Σ′ is the restriction of Σ to the states reachable from s, F ′ is the
restriction of F to the final states reachable from s and t′ is the restriction of t
to Σ′.

A game Γ is weakly solved if we know an optimal strategy for every player
of Γ. The game of checkers was weakly solved in 2007 by Jonathan Schaeffer
[SBB+07] : the best play is known from the initial state but the value of an
arbitrary position is not explicitly determined.

It is strongly solved if we know an optimal strategy for every player of Γ
in the game Γ and in every subgame of Γ. The game of Nim was completely
solved in 1901 by Charles Bouton [Bou01], the perfect play is known for every
possible position.

It is ultra weakly solved if we know its value. For instance, it is known that
the game of Hex is a first player win but no explicit optimal strategy is known
for sufficiently big sizes [Maa05, Chapter 4].

11

2. PREMILINARIES

Admissible bounds

We call reachable outcomes of a given state s the set of outcomes corresponding
to the final states final from s. We call rational outcomes of s the set of outcomes
corresponding to the final states that can be reached by following a dominant
strategy for every player.

An admissible outcome bound on a state s is a superset of the rational
outcomes of s. An admissible outcome bound is loose if it is not equal to the
rational outcomes, (it is a strict superset), otherwise the bound is said to be
tight.

2.3 Monte-Carlo Tree Search

As can be guessed from the name, the Monte-Carlo Tree Search algorithm
is based on Monte-Carlo simulations and on a tree search procedure. The
simulations and the search procedure are interleaved so that four steps can
be identified. Namely, the descent, the selection, the simulation and the
backpropagation. These four steps are repeated iteratively until a stopping
condition is fulfilled2.

Random playouts

A random playouts from a game state s is a continuation of the game starting
at s with each transition randomly selected until a final state is reached. The
basic idea behind these Monte-Carlo simulations is that the expected outcome
of random playouts played from a state s can serve as an evaluation of s.

Of course the expected outcome of a continuation from s between perfect
players played is by definition the best evaluation of s but for most game
states, perfect players are not computationally feasible. On the other hand, the
expectation of a random playout can be efficiently estimated by averaging the
results of several successive random playouts.

The expectation in a state is not the true value (see section 2.2) of that state.
The estimation can be improved, or at least the convergence can be accelerated
using various methods. A promising technique seems to be simulation balancing
[ST09] but it does not constitute the subject of this thesis.

Descent and update

As opposed to the description in section 5, the classic MCTS algorithm actually
constructs an unfolding graph of the game (see section 2.1). In the constructed
tree, the root node corresponds to the submitted position s and each node

2common stopping conditions include threshold on the number of simulation or on the time
elapsed

12

2.3. Monte-Carlo Tree Search

correspond to a position reachable from s. An edge is labelled with the move
needed from the father node to the child node.

An aggregation of the results of the playouts related to a node n is stored in
n3. Other data used for heuristics can also be stored in the nodes, for instance
in section 4 we will need to store admissible bounds.

The expansion of the tree in MCTS is similar to one in a best first search
algorithm. Therefor the tree needs to be stored in memory. For each playout
conducted, a node is added to the tree4.

The random simulations are always started from leaf nodes of the tree.
Deciding which leaf should give rise to the next simulation is done through the
descent of the tree. Starting from the root node, a move is selected among the
outgoing edges. The corresponding child is reached and the process continues
until a leaf is reached. The process can also stop in a internal node if not every
child has been created yet. How the next child is selected is detailed in section
2.3. Once the process has stopped and the tree has been expanded, a random
simulation is run and the tree is updated accordingly.

Updating the tree given the outcome of a random playout is simple enough.
One needs either the list of the traversed nodes, or only the leaf node from
which the simulation was conducted if father nodes are accessible from their
children. The basic information stocked in each node n is the total number of
playouts that traversed n and the mean outcome of these playouts.

It is necessary to specify what is meant by the mean outcome in a node n.
We first need a mapping from O to R, for instance in Chess O = {Black,White,Draw}
where Black indicates that Black has won the game, we can have Black→ 0,
Draw→ 0.5, White→ 1. If the game is a puzzle or a two-players constant sum
game, the concept is not ambiguous. Otherwise we need to store the mean
outcome of the player who is in turn in the father of n.

Selection

Deciding which edge should be explored can be viewed as a multi-armed
bandit problem [ACBF02, KS06]. Priority is naturally given to promising edges,
that is edges leading to a high mean outcome5. However the mean outcome
might not be accurate; the confidence in the mean outcome is a function of the
number of playouts. Hence we might also want to emphasize nodes with a low
number of playouts in order to have a more reliable mean outcome. This is
called the exploration — exploitation dilemma.

A solution to this dilemma in the case of a tree is presented in [KS06]
through the use of an Upper Confidence bound. The UCT value is defined for

each node x to be u(x) = µ(x) + c×
√

log p(x)
n(x) where µ(x) is the mean outcome,

3we will show in section 5 that it is better to actually store results related to edges
4many implementations put a threshold on the tree size
5from the view point of the player whose turn it is

13

2. PREMILINARIES

n(x) is the total number of playouts that went through x and p(x) is the total
number of playouts that went through the father of x. The edge selected is
the one maximizing the UCT value. Following the UCT policy ensures that
the mean outcome will converge towards the game value while the regret is
minimized.

Although the UCT theoretically converges to the minimax outcome, in
practical settings it might be interesting to have a quick idea on which move
is to be selected at the root node without performing a huge number of
random simulations. Heuristics can often improve the playing strength of
the algorithm by providing early advice on which area of the game tree is
best explored. These heuristics cannot be successfully applied to every GA as
they are based on domain specific knowledge. We will quickly present the All
Moves as First (AMAF) heuristic [HPW09] and its integration through Rapid
Action Value Estimation (RAVE) [GS07], for it can actually be applied to a non
negligible number of games.

For a GA (Σ, i, F, P,M, t,O, o), the number of move labels is usually much
smaller than the number of state transitions card(M) � card({(s,m, s′) ∈
Σ×M ×Σ|t(s,m) = s′}). For instance in the variant for the game Nim used in
figure 2.1 and in figure 2.2, there are 6 move labels ({1, 2, 3} for one player and
for its opponent) while the number of edges is 16 in the minimal GA and 27
for the unfolded GA. The AMAF heuristic can be applied when the preceding is
true and the move labels actually denote some game concepts. For instance,
AMAF has been successfully applied to Go where move labels corresponds to
positions where stones are played.

Consider a node n and an edge e going out of n and labelled m. After a
certain number of playouts in the whole MCTS tree, the mean outcome for e is
based only on the number of playouts that went through e which is likely to be
small, therefore the mean outcome is not very reliable. However the number
of playouts that went through edges labelled m is much higher. The principle
of the AMAF algorithm is to use the data for the move label m instead of the
edge e when calculating the UCT value of e. AMAF improves the playing level
in Go because the final board state is not affected by when stones were played6

but only by their positions. That is, the contribution from a move to a final
board state lies in the move label as well as in the corresponding edges.

The RAVE algorithm can bridge the gap between AMAF and the normal
behavior of UCT. When only a few simulations are available for an edge e, the
edge value has a high variance and is not reliable so the AMAF should be used to
evaluate the edge; conversely when many simulations were realized, the edge
value is reliable and is more specific than the label value. Using RAVE consists
in a smooth transition between the label value and the edge value. We denote
the edge value of an edge e by µedge(e) and its label value by µlabel(e). The
RAVE value of e is thus defined as µRAVE(e) = (1−β(e))µedge(e) +β(e)µlabel(e),

6we omit capture rules for the sake of simplicity of explanation

14

2.4. Restrictions for this work

with β(e) decreasing from 1 to 0 as the number of simulations through e
increases.

2.4 Restrictions for this work

In the rest of this work, we will assume some restrictions over the material
presented in this section. These restrictions can be motivated by difficulties
to generalize our results, or simply to ease the exposition. The restrictions
described here do not affect section 3.

Kind of games considered

We will not consider general GAs but rather make a certain number of restrictive
assumptions. First, the GAs considered are sequential games. Second, we
assume no chance is involved. Finally, we are not interested in multiplayer
games, that is we are only dealing with puzzles and two-players games. These
hypotheses are geared toward the MCTS algorithm. They are consistent with
most of the papers published on MCTS. Indeed, most of the publications
related to MCTS deal with the game of Go which is a two-players sequential,
zero sum game.

MCTS

We will also limit ourselves to the most basic MCTS algorithm. Indeed, we will
not use the RAVE method, nor the AMAF heuristic in the following sections.
Similarly, we will not perform any simulation balancing. Section 4 is perfectly
compatible with these improvement of the MCTS framework but this limitation
makes presentation easier. We leave extension of the methods in section 5 to
the AMAF heuristic and integration with the RAVE algorithm as future works.

Admissible bounds

In section 4, the introduction of admissible bounds to MCTS is presented.
We defined in section 2.2 admissible bounds to be superset of the rational
outcomes. In this work, though, we only consider admissible bounds that form
an interval. For instance if the possible outcomes are {Win,Draw, Loss}, we
will not consider {Win, Loss}. Using general admissibility bounds instead of
interval admissibility bounds is beyond the scope of section 4 and is left as
future work7.

7it not yet clear whether it could be useful in practice

15

3 A compiler for the Game Description
Language

Contents
3.1 Introduction . 17
3.2 Game Description Language 18

Syntax . 18
Semantics . 19

3.3 Intermediate languages . 20
Desugaring . 20
Decomposition . 22
Inversion . 22
Target language . 24

3.4 Discussion and future works 24
Performance . 24
Future works . 25

3.1 Introduction

GGP has been described as a Grand AI Challenge [GL05, Thi09] and it has
spanned research in several directions. Some works aim at extracting knowl-
edge from the rules [Clu07], while GGP can also be used to study the behavior
of a general algorithm on several different games such as in [MC10]. Another
possibility is studying the possible interpretation and compilation of the GDL
[Wau09] in order to process games events faster.

While the third direction mentioned does not directly contribute to AI,
it is important for several reasons. It can enable easier integration with
playing programs and let other researchers work on GGP without bothering
with interface writing, GDL interpreting and such non AI details. Having a
faster state machine may move the speed bottleneck of the program from the
GGP module to the AI module and can help performance distinction between

17

3. A COMPILER FOR THE GAME DESCRIPTION LANGUAGE

different AI algorithms. Finally, as GDL is high level language, compiling the
rules to a fast state machine and extracting knowledge from the rules are
sometimes similar things. For instance, factoring a game as in [GST09] could
greatly improve some compilation schemes.

This direction is also that of our work. We focus on the compilation of
rulesheets in the GDL into GAs. More precisely, the compiler described in this
work takes a game rulesheet written in GDL as an input and outputs an OCaml
module that can be interfaced with our playing program also written in OCaml.
The module and the playing program are then compiled to native code by
the standard OCaml compiler [LDG+96] so that the resulting program runs in
reasonable time. The generated module exhibits a GA-like interface. Figure
1.1 sums the normal usage of our compiler up.

The remaining of this section is organized as follows: we first describe the
GDL, then the various passes used by our compiler to generate OCamlcode. To
conclude, we briefly present some experimental considerations and a list of
extension to this compiler that seem suitable.

3.2 Game Description Language

The Game Description Language [LHG06] is based on Datalog and allows to
define a large class of GAs (see section 2.1 for a formal definition of a GA). It
is a rule based language that features function constants, negation-as-a-failure
and variables. Some predefined predicates confer the dynamics of a GA to the
language.

Syntax

A limited number of syntactic constructs appear in GDL1. Predefined predicates
are presented in table 3.1. Function constants may appear and have a fixed
arity determined by context of the first appearance. Logic operators are simply
or, and and not; they appear only in the body of rules. Existentially quantified
variables may also be used bearing some restrictions defined in section 3.2.
Rules are compose of a head term and a body made of logic terms.

A GDL source file is composed of a set of grounded terms that we will call
B for base facts and a set of rules. The Knowledge Interchange Format is used
for the concrete syntax of GDL.

The definition of GDL [LHG06] makes sure that each variable of a negative
literal also appears in a positive literal. The goal of this restriction is probably
to make efficient implementations of GDL easier. Indeed, it is possible to
wait until every variable in a negative literal are bound before checking if the
corresponding fact is in the knowledge base. Put another way, it enables to

1we depart a bit from the presentation in [LHG06] to ease the sketch of our compiler

18

3.2. Game Description Language

Name Arity Appearance

does 2 body
goal 2 base, body, head
init 1 base, head
legal 2 base, body, head
next 1 head
role 1 base
terminal 0 base, body, head
true 1 body

Table 3.1: Predefined predicates in GDL with their arity and restriction on their
appearance. Base means th

deal with the negation by only checking for ground terms in the knowledge
base. This property is called safety.

Semantics

The base facts B defined in the source file are always considered to hold. The
semantics also make use of the logical closure over the rules defined in the
files, that is at a time τ , the rules allow to deduce more facts that are true at τ
based on facts that are known to hold at τ .

The semantics of a program in the GDL can be described through the GA
formalism as follows

• The set of players participating to the game is the set of arguments to the
predicate role.

• A state of the GA is defined by a set of facts that is closed under applica-
tion of the rules in the source files.

• The initial state is the closure over the facts that are arguments to the
predicate init.

• Final states are those in which the fact terminal holds.

• For each player p and each final state s, exactly one fact of the form
goal(p, op) holds. We say that 0 ≤ op ≤ 100 is the reward for player p in
s. The outcome o in the final state is the tuple (op1 , . . . , opk).

• The preference relation of the players is the natural ordering on their
reward. That is (op1 , . . . , opk) ≤p (o′p1 , . . . , o

′
pk

) ⇐⇒ op ≤ o′p.

• For each player p and each state s, the legal moves for p in a state s are
Ls(p) = {mp|legal(p, mp) holds in s}

19

3. A COMPILER FOR THE GAME DESCRIPTION LANGUAGE

• The transition relation is defined by using the predicates does and next.
For a move m = (mp1 , . . . ,mpk) in a state s, let q be the closure of the
following set of facts : s ∪ {does(p1, mp1), . . . , does(pk, mpk)}. Let n be
the set of fact f such that next(f) holds in n. The resulting state of
applying m to s is the closure of the set {true(f)|f ∈ n} ∪B.

3.3 Intermediate languages

Translating GDL programs to programs in the target language can be decom-
posed into several steps. Each of this step corresponds to the translation from
one language to another. We used three intermediate languages in this work.
The first one mini-GDL is a desugared version of GDL. In the second intermedi-
ate language, normal-GDL, the rules are decomposed until a normal form is
reached. The transition between a declarative language and an imperative one
takes place when the program is transformed into the Inverted Intermediate
Language (IIL). Finally the program in the IIL is transformed in an abstract
syntax tree of the target language.

Desugaring

Mini-GDL is a subset of GDL that has the same expressivity. Disjunctions in
rules are no longer possible and the equal predicate is not used.

The right hand side of a rule in GDL contains a logical formula made of an
arbitrary nesting of conjunctions, disjunctions and negations2. The first step
in transforming a rule from GDL to mini-GDL is to put in Disjunctive Normal
Form (DNF).

A rule in DNF can now be split over several as many subrules as the number
of disjunctions it is made of. Indeed a rule with a conclusion c and a right
hand side made of the disjunction of two hypotheses h1 and h2 is logically
equivalent to two rules with h1 and h2 as hypotheses and the same conclusion
c : {c← h1 ∨ h2} ≡ {c← h1, c← h2}.

A rule involving equalities can be turned into an equivalent rule without any
equality. The transformation is made of two recursive processes, a substitution
and a decomposition. When we are faced with an equality between t1 and t2 in
a rule r, either at least one of the two terms is a variable (we’ll assume it is t1)
or both are made of a function constant and a list of subterms. In the former
case the substitution takes place : we obtain an equivalent rule by replacing
every instance of t1 in r by t2 and dropping the equality. In the latter case, if the
function constants are different then the equality is unsatisfiable and r cannot
fire else we can replace the equality between t1 and t2 by equalities between

2although there are some restriction on the negation possibilities

20

3.3. Intermediate languages

User input

GDL compiler

OCaml compiler

linking

compilation

decomposition interfacing

optimizations

inversion

backend

Desugaring

compilation

Lexing and Parsing

optimizations

inclusion

Object files

Executable

GA

Normal-GDL

GDL AST

Playing program

IIL

Runtime

GDL

Mini-GDL

Figure 3.1: Steps and transformations between a GGP program written in GDL
and the executable.

21

3. A COMPILER FOR THE GAME DESCRIPTION LANGUAGE

the subterms of t1 and the subterms of t23. We can carry this operation until
the rule obtained does not have any equality left.

Decomposition

GDL is built upon Datalog, therefore techniques applied to Datalog are often
worth consideration in GDL. One such technique consists in decomposing the
rules until a normal form is obtained. [LS09] presented a decomposition such
that each rule in normal form is made of at most two literals in the right hand
side. This decomposition is briefly recalled, then the adaptations needed to use
it with GDL are presented.

Let r = c← t1∧ t2∧ t3∧· · ·∧ tn be a rule with n > 2 hypotheses. We create
a new term tnew and replace r by the following two rules. r1 = tnew ← t1 ∧ t2
and r2 = c ← tnew ∧ t3 ∧ · · · ∧ tn. Since variables can occur in the different
terms and in c, tnew needs to carry the right variables so that c is instantiated
with the same value when r is fired and when r1 then r2 are fired. This is
achieved by embedding in tnew exactly the variables that appear on the one
hand in t1 or t2 and on the second hand in either c or any of t3, . . . , tn. The
fact that variables that appear in t1 or t2 but not in t3, . . . , tn or c do not appear
in tnew ensures that the number of intermediate facts is kept relatively low.

The right hand side of rules in mini-GDL are not terms but literals so
some care has to be taken to adapt negative literals properly. GDL involves
stratified negation which is not extensively covered by the presentation in
[LS09] of the decomposition, but as Liu and Stoller acknowledge, the extension
is straightforward.

The decomposition of rules calls for an order of the literals, the simplest
such order is the one inherited from the mini-GDL rule. However it is naturally
interesting that the safety property (see section 3.2) holds after the rules are
decomposed. Consequently, literals might need to be reordered so that every
variable appearing in a negative literal m appears in a positive literal before m.
The programmer who wrote the game in Knowledge Interchange Format (KIF)
might have ordered the literals to strive for efficiency or the literals might have
been reordered by optimizations at the mini-GDL stage4. In order to minimize
interferences with the original ordering, only negative literals are moved. The
following fixpoint algorithm is used to reorder the literals and decompose the
rules.

Inversion

After the decomposition is performed, the inversion transformation takes place.
Each function constant and each predicate will generate a function in the target

3function constants with different arities are always considered to be different.
4no such heuristic is implemented yet however

22

3.3. Intermediate languages

Input: set of rules Γ
Result: Γ is decomposed
while There exists a rule r with more than 3 literals in Γ do

let γ = decompose-step(r);
Γ := Γ \ {r};
Γ := Γ ∪ γ;

end
Algorithm 3.1: Fixpoint to transform the set of mini-GDL rules into a set of
normal-GDL rules

Input: rule r = c← l1 ∧ l2 ∧ · · · ∧ ln
Output: set of rules equivalent to r
if l1 is a negative literal and does not correspond to a ground term then

let i = index of the first positive literal;
let r′ = c← li ∧ l1 ∧ · · · ∧ li−1 ∧ li+1 ∧ · · · ∧ ln;
return {r′}

else
if l2 is a negative literal and the variable in l2 do not appear in l1 then

let i = index of the first positive literal after l2;
let r′ = c← l1 ∧ li ∧ l2 ∧ · · · ∧ li−1 ∧ li+1 ∧ · · · ∧ ln;
return {r′}

else
compute ρ (resp. ρ′) the set of variables appearing in l1 or in l2
(resp. in l3 or . . . or in ln);
let tnew = new term made of the variables in ρ ∩ ρ′;
let lnew = the positive literal based on tnew;
let r′ = tnew ← l1 ∧ l2 and let r′′ = c← lnew ∧ l3 ∧ · · · ∧ ln;
return {r′, r′′}

end
end

Algorithm 3.2: One step in the decomposition of a rule

language. This function would in turn trigger the functions corresponding to
head of rules in the body of which the original function constant appeared.

For instance the following Tic-tac-toe rules express in GDL the fact that if a
player has a column or a row then that player has a line, and that a line is a
terminal condition.

(<= (l i n e ? p layer) (column ? p layer)
(row ? p layer))

(<= termina l (l i n e ? p layer))

These rules are roughly translated in the following pseudo-code.

l e t fun_column (var_p layer) =

23

3. A COMPILER FOR THE GAME DESCRIPTION LANGUAGE

add_to_DB (" column " , va r_p layer) ;
i f present_in_DB (" row " , va r_p layer)
then f un_ l i ne (var_p layer)

l e t fun_row (var_p layer) =
add_to_DB (" row " , va r_p layer) ;
i f present_in_DB (" column " , va r_p layer)
then f un_ l i ne (var_p layer)

l e t f un_ l i ne (var_p layer) =
add_to_DB (" l i n e " , va r_p layer) ;
fun_termina l ()

The inversion transformation must also take into account the fact that a
given function constant can naturally appear in several rule bodies. Such a
function constant need still to be translated into a single function of the target
language. Therefore, an important step of the inversion transformation is to
associate to each function constant f the couples (rule head, remaining rule
body) of the rules that can be triggered by f .

Target language

One the game has been translated to the IIL, it can be processed by the
backend to have a legitimate OCaml program. OCaml was chosen as a back-
end for several reasons. Efficiency is an important criterion and OCaml is
compiled to native code. Stratification was handled with a continuation style:
when in a strate n a function f of strate m > n was called, the computation
of f was postponed until the strate m was reached. First class functions
make this manipulation very easy5. Finally, even though Haskell also satisfies
these requirements, we already had a playing program written in OCaml and
generating a module in the same language makes interfacing easier.

3.4 Discussion and future works

Performance

The usual interpretation of GDL is done through an off the shelf prolog inter-
preter such as YAP. A simple benchmark for a GGP engine is to play a large
number of games using a basic Monte-Carlo AI6. We rapidly compared the
speed of programs for several single player and two players games generated
by our compiler named dlc, to data for a YAP based engine which we denote
by ary7.

5or rather, the absence of first class functions make it clumsy!
6details can be found in [Wau09]
7this data was kindly provided by Jean Méhat

24

3.4. Discussion and future works

The comparison cannot not be followed too seriously as the tests were
realized on vastly different computers. ary was tested on a 8 core desktop
computer while dlc was tested on a laptop. The laptop was a year more recent
than the desktop computer, so the results can still give a vague idea on the
performance.

On some games, such as Tic-tac-toe, dlc was between 5% and 20% faster
than ary. That is, the number of random playouts realized by our engine was
in average 5% to 20% superior to the number of random playouts realized by
ary during the same time. The worst result noted was on Connect4 where dlc
was 80% slower than ary.

Although these results are far less impressive than those obtained by Kevin
Waugh in [Wau09], they are still encouraging for several reasons. The gener-
ated code is not optimized by our compiler and some runtime data structures
are clearly suboptimal. To the best of our knowledge it is the first forward chain-
ing approach to GGP and rulesheets are tested and optimized with resolution
based engines.

Future works

Several optimizations would enhance this proof-of-concept compiler. Magic
sets [KSS91] or a more recent method called demand transformation[TL10,
Section 4] can be used to direct the bottom-up evaluation since the needed
queries are known beforehand. Better performance could also be obtained by
using the intermediate language described in [LS09] rather than IIL. Finally,
it would be interesting to develop other back-ends than OCaml, Haskell and
C++ are appealing.

25

4 Bounded MCTS

Contents
4.1 Introduction . 27
4.2 Monte-Carlo tree search solver 28
4.3 Integration of score bounds in MCTS 28

Pessimistic and optimistic bounds 29
Updating the tree . 29
Pruning nodes with alpha-beta style cuts 30
Bounds based node value bias 31

4.4 Why Seki and Semeai are hard for MCTS 32
4.5 Experimental Results . 35

Seki problems . 35
Connect Four . 37

4.6 Conclusion and Future Works 38

The following section draws heavily from [CS10].
MCTS is a successful algorithm used in many state of the art game engines.

We propose to improve a MCTS solver when a game has more than two
outcomes. It is for example the case in games that can end in draw positions.
In this case it improves significantly a MCTS solver to take into account bounds
on the possible scores of a node in order to select the nodes to explore. We
apply our algorithm to solving Seki in the game of Go and to Connect Four.

4.1 Introduction

In LOA, MCTS has been successfully combined with exact results in a MCTS
solver [WBS08]. We propose to further extend this combination to games that
have more than two outcomes. Example of such a game is playing a Seki in the
game of Go: the game can be either lost, won or draw (i.e. Seki). Improving
MCTS for Seki and Semeai is important for Monte-Carlo Go since this is one of
the main weaknesses of current Monte-Carlo Go programs. We also address
the application of our algorithm to Connect Four that can also end in a draw.

27

4. BOUNDED MCTS

The second section deals with the state of the art in MCTS solver, the third
section details our algorithm that takes bounds into account in a MCTS solver,
the fourth section explains why Seki and Semeai are difficult for Monte-Carlo
Go programs, the fifth section gives experimental results.

4.2 Monte-Carlo tree search solver

MCTS is able to converge to the optimal play given infinite time, however it is
not able to prove the value of a position if it is not associated to a solver. MCTS
is not good at finding narrow lines of tactical play. The association to a solver
enables MCTS to alleviate this weakness and to find some of them.

Combining exact values with MCTS has been addressed by Winands et al.
in their MCTS solver [WBS08]. Two special values can be assigned to nodes
: +∞ and −∞. When a node is associated to a solved position (for example
a terminal position) it is associated to +∞ for a won position and to −∞ for
a lost position. When a max node has a won child, the node is solved and
the node value is set to +∞. When a max node has all its children equal to
−∞ it is lost and set to −∞. The descent of the tree is stopped as soon as
a solved node is reached, in this case no simulation takes place and 1.0 is
backpropagated for won positions, whereas −1.0 is backpropagated for lost
ones.

Combining such a solver to MCTS improved a LOA program, winning 65%
of the time against the MCTS version without a solver. Winands et al. did not
try to prove draws since draws are exceptional in LOA.

4.3 Integration of score bounds in MCTS

We assume the outcomes of the game belong to an interval [minscore,maxscore]
of R, the player Max is trying to maximize the outcome while the player Min is
trying to minimize the outcome.

In the following we are supposing that the tree is a minimax tree. It can be
a partial tree of a sequential perfect information deterministic zero-sum game
in which each node is either a max-node when the player Max is to play in
the associated position or a min-node otherwise. Note that we do not require
the child of a max-node to be a min-node, so a step-based approach to MCTS
(for instance in Arimaa [Koz09]) is possible. It can also be a partial tree of a
perfect information deterministic one player puzzle. In this latter case, each
node is a max-node and Max is the only player considered.

We assume that there are legal moves in a game position if and only if
the game position is non terminal. Nodes corresponding to terminal game
positions are called terminal nodes. Other nodes are called internal nodes.

Our algorithm adds score bounds to nodes in the MCTS tree. It needs slight
modifications of the backpropagation and descent steps. We first define the

28

4.3. Integration of score bounds in MCTS

bounds that we consider and express a few desired properties. Then we show
how bounds can be initially set and then incrementally adapted as the available
information grows. We then show how such knowledge can be used to safely
prune nodes and subtrees and how the bounds can be used to heuristically bias
the descent of the tree.

Pessimistic and optimistic bounds

For each node n, we attach a pessimistic (noted pess(n)) and an optimistic
(noted opti(n)) bound to n. Note that optimistic and pessimistic bounds in
the context of game tree search were first introduced by Hans Berliner in his
B* algorithm [Ber79]. The names of the bounds are defined after Max’s point
of view, for instance in both max- and min-nodes, the pessimistic bound is a
lower bound of the best achievable outcome for Max (assuming rational play
from Min). For a fixed node n, the bound pess(n) is increasing (resp. opti(n)
is decreasing) as more and more information is available. This evolution is
such that no false assumption is made on the expectation of n : the outcome
of optimal play from node n on, noted real(n), is always between pess(n)
and opti(n). That is pess(n) ≤ real(n) ≤ opti(n). If there is enough time
allocated to information discovering in n, pess(n) and opti(n) will converge
towards real(n). A position corresponding to a node n is solved if and only if
pess(n) = real(n) = opti(n).

If the node n is terminal then the pessimistic and the optimistic values
correspond to the score of the terminal position pess(n) = opti(n) = score(n).
Initial bounds for internal nodes can either be set to the lowest and highest
scores pess(n) = minscore and opti(n) = maxscore, or to some values given
by an appropriate admissible heuristic [HNR68]. At a given time, the optimistic
value of an internal node is the best possible outcome that Max can hope for,
taking into account the information present in the tree and assuming rational
play for both player. Conversely the pessimistic value of an internal node is the
worst possible outcome that Max can fear, with the same hypothesis. Therefore
it is sensible to update bounds of internal nodes in the following way.
If n is an internal max-node then
pess(n) := maxs∈children(n) pess(s)
opti(n) := maxs∈children(n) opti(s)

If n is an internal min-node then
pess(n) := mins∈children(n) pess(s)
opti(n) := mins∈children(n) opti(s)

Updating the tree

Knowledge about bounds appears at terminal nodes, for the pessimistic and
optimistic values of a terminal node match its real value. This knowledge is
then recursively upwards propagated as long as it adds information to some
node. Using a fast incremental algorithm enables not to slow down the MCTS
procedure.

29

4. BOUNDED MCTS

Let s be a recently updated node whose parent is a max-node n. If pess(s)
has just been increased, then we might want to increase pess(n) as well. It
happens when the new pessimistic bound for s is greater than the pessimistic
bound for n : pess(n) := max(pess(n), pess(s)). If opti(s) has just been de-
creased, then we might want to decrease opti(n) as well. It happens when the
old optimistic bound for s was the greatest among the optimistic bounds of all
children of n. opti(n) := maxs∈children(n) opti(s). The converse update process
takes place when s is the child of a min-node.

When n is not fully expanded, that is when some children of n have
not been created yet, a dummy child d such that pess(d) = minscore and
opti(d) = maxscore can be added to n to be able to compute conservative
bounds for n despite bounds for some children being unavailable.

Input: node s
Result: Update the pessimistic bounds of the ancestors of s
if s is not the root node then

let n = the parent of s;
let old_pess = pess(n);
if old_pess < pess(s) then

if n is a Max node then
pess(n) := pess(s);
prop-pess (n);

else
pess(n) := mins′∈children(n) pess(s′);
if old_pess > pess(n) then

prop-pess (n);
end

end
end

end
Algorithm 4.1: prop-pess : Propagating pessimistic bounds

Pruning nodes with alpha-beta style cuts

Once pessimistic and optimistic bounds are available, it is possible to prune
subtrees using simple rules. Given a max-node (resp. min-node) n and a child
s of n, the subtree starting at s can safely be pruned if opti(s) ≤ pess(n) (resp.
pess(s) ≥ opti(n)).

To prove that the rules are safe, let’s suppose n is an unsolved max-node
and s is a child of n such that opti(s) ≤ pess(n). We want to prove it is not
useful to explore the child s. On the one hand, n has at least one child left
unpruned. That is, there is at least a child of n, s+, such that opti(s′) > pess(n).
This comes directly from the fact that as n is unsolved, opti(n) > pess(n), or

30

4.3. Integration of score bounds in MCTS

Input: node s
Result: Update the optimistic bounds of the ancestors of s
if s is not the root node then

let n = the parent of s;
let old_opti = opti(n);
if old_opti > opti(s) then

if n is a Max node then
opti(n) := maxs′∈children(n) opti(s′);
if old_opti > opti(n) then

prop-opti(n);
end

else
opti(n) := opti(s);
prop-opti(n);

end
end

end
Algorithm 4.2: prop-opti : Propagating optimistic bounds

equivalently maxs+∈children(n) opti(s+) > pess(n). s+ is not solved. On the
other hand, let us show that there exists at least one other child of n better
worth choosing than s. By definition of the pessimistic bound of n, there is at
least a child of n, s′, such that pess(s′) = pess(n). The optimistic outcome in s
is smaller than the pessimistic outcome in s′ : real(s) ≤ opti(s) ≤ pess(s′) ≤
real(s′). Now either s 6= s′ and s′ can be explored instead of s with no loss,
or s = s′ and s is solved and does not need to be explored any further, in the
latter case s+ could be explored instead of s.

An example of a cut node is given in Figure 4.1. In this figure, the min-node
d has a solved child (f) with a 0.5 score, therefore the best Max can hope for
this node is 0.5. Node a has also a solved child (c) that scores 0.5. This makes
node d useless to explore since it cannot improve upon c.

Bounds based node value bias

The pessimistic and optimistic bounds of nodes can also be used to influence
the choice among uncut children in a complementary heuristic manner. In a
max-node n, the chosen node is the one maximizing a value function Qmax.

In the following example, we assume the outcomes to be reals from [0, 1]
and for sake of simplicity the Q function is assumed to be the mean of random
playouts. Figure 4.2 shows an artificial tree with given bounds and given results
of Monte-Carlo evaluations. The node a has two children b and c. Random
simulations seem to indicate that the position corresponding to node c is less
favorable to Max than the position corresponding to b. However the lower and

31

4. BOUNDED MCTS

a
pess = 0.5
opti = 1.0

c
pess = 0.5
opti = 0.5

b
pess = 0.0
opti = 1.0

e
pess = 0.0
opti = 1.0

d
pess = 0.0
opti = 0.5

f
pess = 0.5
opti = 0.5

Figure 4.1: Example of a cut. The d node is cut because its optimistic value is
smaller or equal to the pessimistic value of its father.

upper bounds of the outcome in c and b seem to mitigate this estimation.
This example intuitively shows that taking bounds into account could

improve the node selection process. It is possible to add bound induced bias to
the node values of a son s of n by setting two bias terms γ and δ, and rather
using adapted Q′ node values defined as Q′max(s) = Qmax(s) + γ pess(s) +
δ opti(s) and Q′min(s) = Qmin(s)− γ opti(s)− δ pess(s).

4.4 Why Seki and Semeai are hard for MCTS

The figure 4.3 shows two Semeai. The first one is unsettled, the first player
wins. In this position, random playouts give a probability of 0.5 for Black to
win the Semeai if he plays the first move of the playout. However if Black plays
perfectly he always wins the Semeai.

The second Semeai of figure 4.3 is won for Black even if White plays first.
The probability for White to win the Semeai in a random game starting with a
White move is 0.45. The true value with perfect play should be 0.0.

We have written a dynamic programming program to compute the exact
probabilities of winning the Semeai for Black if he plays first. A probability p
of playing in the Semeai is used to model what would happen on a 19 × 19
board where the Semeai is only a part of the board. In this case playing moves
outside of the Semeai during the playout has to be modeled.

32

4.4. Why Seki and Semeai are hard for MCTS

a
µ = 0.58
n = 500

pess = 0.5
opti = 1.0

c
µ = 0.55
n = 200

pess = 0.5
opti = 1.0

b
µ = 0.6
n = 300

pess = 0.0
opti = 0.7

Figure 4.2: Artificial tree in which the bounds could be useful to guide the
selection.

Figure 4.3: An unsettled Semeai and Semeai lost for White.

The table 4.1 gives the probabilities of winning the Semeai for Black if he
plays first according to the number of liberties of Black (the rows) and the
number of liberties of White (the column). The table was computed with the
dynamic programming algorithm and with a probability p = 0.0 of playing
outside the Semeai. We can now confirm, looking at row 9, column 9 that the
probability for Black to win the first Semeai of figure 4.3 is 0.50.

We have computed the tables for a probability p = 0.80 of playing outside
the Semeai. We choose this probability because it is likely to happen in a real
19 × 19 game. The dynamic programming was initialized with a probability

33

4. BOUNDED MCTS

Own liberties Opponent liberties

1 2 3 4 5 6 7 8 9

1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 1.00 0.50 0.30 0.20 0.14 0.11 0.08 0.07 0.05
3 1.00 0.70 0.50 0.37 0.29 0.23 0.18 0.15 0.13
4 1.00 0.80 0.63 0.50 0.40 0.33 0.28 0.24 0.20
5 1.00 0.86 0.71 0.60 0.50 0.42 0.36 0.31 0.27
6 1.00 0.89 0.77 0.67 0.58 0.50 0.44 0.38 0.34
7 1.00 0.92 0.82 0.72 0.64 0.56 0.50 0.45 0.40
8 1.00 0.93 0.85 0.76 0.69 0.62 0.55 0.50 0.45
9 1.00 0.95 0.87 0.80 0.73 0.66 0.60 0.55 0.50

Table 4.1: Proportion of wins for random play on the liberties when always
playing in the Semeai

Own liberties Opponent liberties

1 2 3 4 5 6 7 8 9

1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 1.00 0.50 0.30 0.20 0.14 0.11 0.08 0.07 0.05
3 1.00 0.70 0.50 0.37 0.29 0.23 0.18 0.15 0.13
4 1.00 0.80 0.63 0.50 0.40 0.33 0.28 0.24 0.20
5 1.00 0.86 0.71 0.60 0.50 0.42 0.36 0.31 0.27
6 1.00 0.89 0.77 0.67 0.58 0.50 0.44 0.38 0.34
7 1.00 0.92 0.82 0.72 0.64 0.56 0.50 0.45 0.40
8 1.00 0.93 0.85 0.76 0.69 0.62 0.55 0.50 0.45
9 1.00 0.95 0.87 0.80 0.73 0.66 0.60 0.55 0.50

Table 4.2: Proportion of wins for random play on the liberties when playing
outside the Semeai 80% of the time

of 1 of winning when the opponent has only one liberty in order to model the
rule of capturing a string in atari as usually used in Monte-Carlo Go programs.
The results for random play on the liberties are given in table 4.2.

In these two tables, when the strings have six liberties or more, the values
for lost positions are close to the values for won positions, so MCTS is not well
guided by the mean of the playouts.

34

4.5. Experimental Results

4.5 Experimental Results

In order to apply the score bounded MCTS algorithm, we have chosen games
that can often finish as draws. Such two games are playing a Seki in the game
of Go and Connect Four. The first subsection details the application to Seki, the
second subsection is about Connect Four.

Seki problems

We have tested Monte-Carlo with bounds on Seki problems since there are
three possible exact values for a Seki: Won, Lost or Draw. Monte-Carlo with
bounds can only cut nodes when there are exact values, and if the values are
only Won and Lost the nodes are directly cut without any need for bounds.

Solving Seki problems has been addressed in [NKM06]. We use more
simple and easy to define problems than in [NKM06]. Our aim is to show that
Monte-Carlo with bounds can improve on Monte-Carlo without bounds as used
in [WBS08].

We used Seki problems with liberties for the players ranging from one to
six liberties. The number of shared liberties is always two. The Max player
(usually Black) plays first. The figure 4.4 shows the problem that has three
liberties for Max (Black), four liberties for Min (White) and two shared liberties.
The other problems of the test suite are very similar except for the number of
liberties of Black and White. The results of these Seki problems are given in
table 4.3. We can see that when Max has the same number of liberties than
Min or one liberty less, the result is Draw.

Figure 4.4: A test seki with two shared liberties, three liberties for the Max
player (Black) and four liberties for the Min player (White).

35

4. BOUNDED MCTS

Min liberties Max liberties

1 2 3 4 5 6

1 Draw Won Won Won Won Won
2 Draw Draw Won Won Won Won
3 Lost Draw Draw Won Won Won
4 Lost Lost Draw Draw Won Won
5 Lost Lost Lost Draw Draw Won
6 Lost Lost Lost Lost Draw Draw

Table 4.3: Results for Sekis with two shared liberties

Min liberties Max liberties

1 2 3 4 5 6

1 359 479 1 535 2 059 10 566 25 670
2 1 389 11 047 12 627 68 718 98 155 289 324
3 7 219 60 755 541 065 283 782 516 514 791 945
4 41 385 422 975 >106 >106 >989 407 >999 395
5 275 670 >106 >106 >106 >106 >106

6 >106 >106 >106 >106 >106 >106

Table 4.4: Number of playouts for solving Sekis with two shared liberties

The first algorithm we have tested is simply to use a solver that cuts nodes
when a child is won for the color to play as in [WBS08]. The search was limited
to 1 000 000 playouts. Each problem is solved thirty times and the results in
the tables are the average number of playouts required to solve a problem. An
optimized Monte-Carlo tree search algorithm using the Rave heuristic is used.
The results are given in table 4.4. The result corresponding to the problem of
figure 4.4 is at row labeled 4 min lib and at column labeled 3 max lib, it is not
solved in 1 000 000 playouts.

The next algorithm uses bounds on score, node pruning and no bias on
move selection (i.e. γ = 0 and δ = 0). Its results are given in table 4.5. Table
4.5 shows that Monte-Carlo with bounds and node pruning works better than
a Monte-Carlo solver without bounds.

Comparing table 4.5 to table 4.4 we can also observe that Monte-Carlo with
bounds and node pruning is up to five time faster than a simple Monte-Carlo
solver. The problem with three Min liberties and three Max liberties is solved in
107,353 playouts when it is solved in 541,065 playouts by a plain Monte-Carlo
solver.

The third algorithm uses bounds on score, node pruning and biases move
selection with δ = 10000. The results are given in table 4.6. We can see in

36

4.5. Experimental Results

Min liberties Max liberties

1 2 3 4 5 6

1 192 421 864 2 000 4 605 14 521
2 786 3 665 3 427 17 902 40 364 116 749
3 4 232 22 021 107 353 94 844 263 485 588 912
4 21 581 177 693 >964 871 >106 878 072 >106

5 125 793 >106 >106 >106 >106 >106

6 825 760 >106 >106 >106 >106 >106

Table 4.5: Number of playouts for solving Sekis with two shared liberties,
bounds on score, node pruning, no bias

Min liberties Max liberties

1 2 3 4 5 6

1 137 259 391 1 135 2 808 7 164
2 501 1 098 1 525 3 284 13 034 29 182
3 1 026 5 118 9 208 19 523 31 584 141 440
4 2 269 10 094 58 397 102 314 224 109 412 043
5 6 907 27 947 127 588 737 774 >999 587 >106

6 16 461 85 542 372 366 >106 >106 >106

Table 4.6: Number of playouts for solving Sekis with two shared liberties,
bounds on score, node pruning, biasing with γ = 0 and δ = 10000

this table that the number of playouts is divided by up to ten. For example the
problem with three Max lib and three Min lib is now solved in 9,208 playouts
(it was 107,353 playouts without biasing move selection and 541,065 playouts
without bounds). We can see that eight more problems can be solved within
the 1,000,000 playouts limit.

Connect Four

Connect Four was solved for the standard size 7 × 6 by L. V. Allis in 1988
[All88]. We tested a plain MCTS Solver as described in [WBS08] (plain), a
score bounded MCTS with alpha-beta style cuts but no selection guidance that
is with γ = 0 and δ = 0 (cuts) and a score bounded MCTS with cuts and
selection guidance with γ = 0 and δ = −0.1 (guided cuts). We tried multiple
values for γ and δ and we observed that the value of γ does not matter much
and that the best value for δ was consistently δ = −0.1. We solved various
small sizes of Connect Four. We recorded the average over thirty runs of the
number of playouts needed to solve each size. The results are given in table

37

4. BOUNDED MCTS

Size

3× 3 3× 4 4× 3 4× 4

plain MCTS Solver 2 700.9 26 042.7 227 617.6 > 5× 106

MCTS Solver with cuts 2 529.2 12 496.7 31 772.9 386 324.3
MCTS Solver with guided cuts 1 607.1 9 792.7 24 340.2 351 320.3

Table 4.7: Comparison of solvers for various sizes of Connect Four

4.7.
Concerning 7 × 6 Connect Four we did a 200 games match between a

Monte-Carlo with alpha-beta style cuts on bounds and a Monte-Carlo without
it. Each program played 10 000 playouts before choosing each move. The
result was that the program with cuts scored 114.5 out of 200 against the
program without cuts (a win scores 1, a draw scores 0.5 and a loss scores 0).

4.6 Conclusion and Future Works

We have presented an algorithm that takes into account bounds on the possible
values of a node to select nodes to explore in a MCTS solver. For games that
have more than two outcomes, the algorithm improves significantly on a MCTS
solver that does not use bounds.

In our solver we avoided solved nodes during the descent of the MCTS tree.
As [WBS08] points out, it may be problematic for a heuristic program to avoid
solved nodes as it can lead MCTS to overestimate a node.

It could be interesting to make γ and δ vary with the number of playout
of a node as in RAVE. We may also investigate alternative ways to let score
bounds influence the child selection process, possibly taking into account the
bounds of the father.

We currently backpropagate the real score of a playout, it could be inter-
esting to adjust the propagated score to keep it consistent with the bounds of
each node during the backpropagation.

38

5 Transpositions in MCTS

Contents
5.1 Introduction . 39
5.2 Motivation . 41
5.3 Possible Adaptations of UCT to Transpositions 42

Storing results in the edges rather than in the nodes 42
Backpropagation . 43
Selection . 44

5.4 Experimental results . 48
Tests on LeftRight . 48
Tests on Hex . 49

5.5 Conclusion and Future Work 49

The following section draws heavily from [SCM10].

5.1 Introduction

MCTS is a very successful algorithm for multiple complete information games
such as Go [Cou06, Cou07, GS08, CCF+09] or Hex [CS09]. Monte-Carlo
programs usually deal with transpositions the simple way: they do not modify
the UCT formula and develop a DAG instead of a tree.

Transpositions are widely used in combination with the Alpha-Beta algo-
rithm [Bre98] and they are a crucial optimization for games such as Chess.
Transpositions are also used in combination with the MCTS algorithm but little
work has been done to improve their use or even to show they are useful. The
only works we are aware of are the paper by Childs and Kocsis [CBK08] and
the paper by Méhat and Cazenave [MC10].

We will use the following notations for a given object x. If x is a node, then
c(x) is the set of the edges going out of x, similarly if x is an edge and y is its
destination, then c(x) = c(y) is the set of the edges going out y. We indulge
in saying that c(x) is the set of children of x even when x is an edge. If x is
an edge and y is its origin, then b(x) = c(y) is the set of edges going out of

39

5. TRANSPOSITIONS IN MCTS

y. b(x) is the set of the “siblings” of x plus x. During the backpropagation
step, payoffs are cumulatively attached to nodes or edges. We denote by µ(x)
the mean of payoffs attached to x (be it an edge or a node), and by n(x)
the number of payoffs attached to x. If x is an edge and y is its origin, we
denote by p(x) the total number of payoffs the children of y have received:
p(x) =

∑
e∈c(y) n(e) =

∑
e∈b(x) n(e). Let x be a node or an edge, between the

apparition of x in the tree and the first apparition of a child of x, some payoffs
(usually one) are attached to x, we denote the mean (resp. the number) of
such payoffs by µ′(x) (resp. n′(x)). We denote by π(x) the best move in x
according to a context dependant policy.

Before having a look at transpositions in the MCTS framework, we first use
the notation to express a few remarks on the plain UCT algorithm (when there
is no transpositions). The following equalities are either part of the definition
of the UCT algorithm or can easily be deduced. The payoffs available at a node
or an edge x are exactly those available at the children of x and those that were
obtained before the creation of the first child: n(x) = n′(x)+

∑
e∈c(x) n(e). The

mean of a move is equal to the weighted mean of the means of the children
moves and the payoffs carried before creation of the first child:

µ(x) =
µ′(x)× n′(x) +

∑
e∈c(x) µ(e)× n(e)

n′ +
∑

e∈c(x) n(e)
(5.1)

The plain UCT value [KS06] with an exploration constant c giving the score of
a node x is written

u(x) = µ(x) + c×

√
log p(x)

n(x)
(5.2)

The plain UCT policy consists in selecting the move with the highest UCT
formula: π(x) = maxe∈c(x) u(e). When enough simulations are run at x, the
mean of x and the mean of the best child of x are converging towards the same
value [KS06]:

lim
n(x)→∞

µ(x) = lim
n(x)→∞

µ(π(x)) (5.3)

Our main contribution consists in providing a parametric formula adapted
from the UCT formula 5.2 so that some transpositions are taken into account.
Our framework encompasses the the work presented in [CBK08]. We show that
the simple way is often surpassed by other parameter settings on an artificial
one player game as well as on the two player game Hex. We do not have a
definitive explanation on how parameters influence the playing strength yet.
We show that storing aggregations of the payoffs on the edge rather than on
the nodes is preferable from a conceptual point of view and our experiment
show that it also often lead to better results.

The rest of this article is organized as follows. We first recall the most
common way of handling transpositions in the MCTS context. We study
the possible adaptation of the backpropagation mechanism to DAG game

40

5.2. Motivation

trees. We present a parametric framework to define an adapted score and an
adapted exploration factor of a move in the game tree. We then show that our
framework is general enough to encompass the existing tools for transpositions
in MCTS. Finally, experimental results on an artificial single player game and
on the two players game Hex are presented.

5.2 Motivation

Introducing transpositions in MCTS is challenging for several reasons. First,
equation 5.1 may not hold anymore since the children moves might be simu-
lated through other paths. Second, UCT is based on the principle that the best
moves will be chosen more than the other moves and consequently the mean
of a node will converge towards the mean of its best child ; having equation
5.1 holding is not sufficient as demonstrated by figure 5.2 where equation 5.3
is not satisfied.

The most common way to deal with transpositions in the MCTS framework,
beside ignoring them completely, is what will be referred to in this article as
the simple way. Each position encountered during the descent corresponds to a
unique node. The nodes are stored in hash-table with the key being the hash
value of the corresponding position. Mean payoff and number of simulations
that traversed a node during the descent are stored in that node. The plain
UCT policy is used to select nodes.

The simple way shares more information than ignoring transpositions. In-
deed, the score of every playout generated after a given position a is cumulated
in the node representing a. To the contrary, playouts generated after a when
transpositions not detected are divided among all represents of a in the tree
depending on the moves that preceded them.

It is desirable to maximize the usage of a given amount of information
because it allows to make better informed decisions. In the MCTS context,
information is in the form of playouts. If a playout is to be maximally used, it
may be necessary to have its payoff available outside of the path it took in the
game tree. For instance in figure 5.3 the information provided by the playouts
were only propagated on the edges of the path they took. There is not enough
information directly available at a even though a sufficient number of playouts
has been run to assert that b is a better position than c.

Nevertheless, it is not trivial to share the maximum amount of information.
A simple idea is to keep the DAG structure of the underlying graph and to
directly propagate the outcome of a playout on every possible ancestor path. It
is not always a good idea to do so in a UCT setting, as demonstrated by the
counter-example 5.2. We will further study this idea under the name update-all
in section 5.3.

41

5. TRANSPOSITIONS IN MCTS

5.3 Possible Adaptations of UCT to Transpositions

The first requirement of using transpositions is to keep the DAG structure
of the partial game tree. The partial game tree is composed of nodes and
edges, since we are not concerned with memory issues in this first approach,
it is safe to assume that it is easy to access the outgoing edges as well as
the in edges of given nodes. When a transposition occurs, the subtree of the
involved node is not duplicated. Since we keep the game structure, each
possible position corresponds to at most one node in the DAG and each node
in the DAG corresponds to exactly one possible position in the game. We will
indulge ourselves to identify a node and the corresponding position. We will
also continue to call the graph made by the nodes and the moves game tree
even though it is now a DAG.

Storing results in the edges rather than in the nodes

In order to descend the game tree, one has to select moves from the root
position until reaching an end of the game-tree. The selection uses the results of
the previous playouts which need to be attached to moves. A move corresponds
exactly to an edge of the game tree, however it is also possible to attach the
results to nodes of the game tree. When the game tree is a tree, there is
a one to one correspondence between edges and nodes, save for the root
node. To each node but the root, correspond a unique parent edge and each
edge has of course a unique destination. It is therefore equivalent to attach
information to an edge (a, b) or to the destination b of that edge. MCTS
implementations seem to prefer attaching information to nodes rather than to
edges for implementation simplicity reasons. When the game tree is a DAG,
we do not have this one to one correspondence so there may be a difference
between attaching information to nodes or to edges.

In the following we will assume that aggregations of the payoffs are at-
tached to the edges of the DAG rather than to the nodes (5.1 shows the two
possibilities for a toy tree). The payoffs of a node a can still be accessed by
aggregating1 the payoffs of the edges arriving in a. No edge arrives at the root
node but the results at the root node are usually not needed. On the other
hand, the payoffs of an edge cannot be easily obtained from the payoffs of its
starting node and its ending node, therefore storing the results in the edges is
more general than storing the results only in the nodes2.

1The particular aggregation depends on the backpropagation method used (see section 5.3):
in the update-all case, the data of a node is equivalent to the data of the edge with the biggest
number of playouts.

2As an implementation note, it is possible to store the aggregations of the edges in the start
node provided one associates the relevant move.

42

5.3. Possible Adaptations of UCT to Transpositions

µ = .0
n = 1

µ = .5
n = 4

µ = .8
n = 5

µ = .67
n = 6

µ = .7
n = 10

(a) Storing the results
in the nodes

µ = .5
n = 2

µ = .0
n = 1

µ = .75
n = 4

µ = .8
n = 5

µ = .5
n = 4

(b) Storing the results in the
edges

Figure 5.1: Example of the update-descent backpropagation results stored on
nodes and on edges for a toy tree.

Backpropagation

After the tree was descended and a simulation lead to a payoff, information has
to be propagated upwards. When the game tree is a plain tree, the propagation
is straightforward. The traversed nodes are exactly the ancestors of the leaf
node from which the simulation was performed. The edges to be updated
are thus easily accessed and for each edge, one simulation is added to the
counter and the total score is updated. Similarly, in the hash-table solution,
the traversed edges are stored on a stack and they are updated the same way.

In the general DAG problem however, many distinct algorithms are possible.
The ancestor edges are a superset of the traversed edges and it is not clear
which need to be updated and if and how the aggregation should be adapted.
We will be concerned with three possible ways to deal with the update step:
updating every ancestor edge, updating the descent path, updating the ancestor
edges but modifying the aggregation of the edge not belonging to the descent
path.

Updating every ancestor edge without modifying the aggregation is simple
enough, provided one takes care that each edge is not updated more than once
after each playout. We call this method update-all. Update-all might suffer
from deficiencies in schemata like the counter-example presented in figure 5.2.
The problem in update-all made obvious by this counter-example is that the
distribution of playouts in the different available branches does not correspond
to a distribution as given by UCT: assumption 5.3 is not satisfied.

The other straightforward method is to update only the traversed edges,
we call it update-descent. This method is very similar to the standard UCT
algorithm implemented on a regular tree and it is used in the simple way.
When such a backpropagation is selected, the selection mechanism can be

43

5. TRANSPOSITIONS IN MCTS

µ = .5
n = 2

µ = .4
n = 2

µ = .5
n = 2

µ = .5
n = 2

µ = .45
n = 4

E = .8E = .5

(a) Initial settings

µ = .5
n = 102

µ = .4
n = 2

µ = .5
n = 102

µ = .5
n = 102

µ = .498
n = 104

E = .8E = .5

(b) 100 playouts later

Figure 5.2: Counter-example for the update-all backpropagation procedure. If
the initial estimation of the edges is imperfect, the UCT policy combined with
the update-all backpropagation procedure is likely to lead to errors

adjusted so that transpositions are taken into account when evaluating a move.
The possibilities for the selection mechanism are presented in the following
section.

The backpropagation procedure advocated in [CBK08] for their selection
procedure UCT3 is also noteworthy. We did not implement it because the same
behaviour could be obtained directly with update-descent backpropagation
(see section 5.3).

Selection

The descent of the game tree can be described as follows. Start from the root
node. When in a node a, select a move m available in a using a selection
procedure. If m corresponds to an edge in the game tree, move along that
edge to another node of the tree and repeat. If m does not correspond to an
edge in the tree, consider the position b resulting from playing m in a. It is
possible that b was already encountered and there is a node representing b in
the tree, in this case, we have just discovered a transposition, build an edge
from a to b, move along that edge and repeat the procedure from b. Otherwise
construct a new node corresponding to b and create an edge between a and b,
the descent is finished.

The selection process consists in selecting a move that maximizes a given
formula. State of the art implementations usually rely on complex formulae
that embed heuristics or domain specific knowledge, but the baseline remains
the UCT formula3 defined in equation 5.2.

3Although these heuristics tend to make the exploration term unnecessary.

44

5.3. Possible Adaptations of UCT to Transpositions

µ = 0.5
n = 20

µ = 0.4
n = 5

µ = 0.6
n = 25

µ = 0.5
n = 16

µ = 0.65
n = 20

µ = 0.5
n = 4

a

µ∞ = 0.6

b

µ∞ = 0.5

c

Figure 5.3: There is enough information in the game tree to know that position
b is better than position c, but there is not enough local information at node a
to make the right decision.

When the game tree is a DAG and we use the update-descent backpropaga-
tion method, the equation 5.1 does not hold anymore, so it is not absurd to
look for another way of estimating the value of a move than the UCT value.
Simply put, equation 5.1 says that all the needed information is available
locally, however deep transpositions can provide useful information that would
not be accessible locally.

For instance in the partial game tree in figure 5.3, it is desirable to use the
information provided by the transpositions in node b and c in order to make
the right choice at node a. The local information in a is not enough to decide
confidently between b and c, but if we have a look at the outgoing edges of b
and c then we will have more information. This example could be adapted so
that we would need to look arbitrarily deep to get enough information.

We define a parametric adapted score to try to take advantage of the trans-
positions to gain further insight in the intrinsic value of the move. The adapted
score is parameterized by a depth d and is written for an edge e µd(e). µd(e)
uses the number of playouts, the mean payoff and the adapted score of the de-
scendants up to depth d. The adapted score is given by the following recursive

45

5. TRANSPOSITIONS IN MCTS

formula.

µ0(e) = µ(e)

µd(e) =

∑
f∈c(e) µd−1(f)× n(f)∑

f∈c(e) n(f)

The UCT algorithm uses an exploration factor to balance concentration
on promising moves and exploration of less known paths. The exploration
factor of an edge tries to quantify the information directly available at it. It
does not allow to acknowledge that transpositions occurring after the edge
offer additional information to evaluate the quality of a move. So just as we
did above with the adapted score, we define a parametric adapted exploration
factor to replace the exploration factor. Specifically, for an edge e, we define a
parametric move exploration that accounts for the adaptation of the number
of payoffs available at edge e and is written nd(e) and a parametric origin
eploration that accounts for the adaptation of the total number of payoffs at
the origin of e and is written pd(e). The parameter d also refers to a depth.
nd(e) and pd(e) are defined by the following formulae.

n0(e) = n(e)

nd(e) =
∑

f∈c(e)

nd−1(f)

pd(e) =
∑

f∈b(e)

nd(f)

In the MCTS algorithm, the tree is built progressively as the simulations are
run. So any aggregation of edges built after edge e will lack the information
available in µ′(e) and n′(e). This can lead to a leak of information that becomes
more serious as the depth d grows. If we attach µ′(e) and n′(e) along µ(e) and
n(e) to an edge it is possible to avoid the leak of information and to slightly
adapt the above formulae to also take advantage of this information. Another
advantage of the following formulation is that is avoids to treat separately
edges without any child.

µ0(e) = µ(e)

µd(e) =
µ′(e)× n′(e) +

∑
f∈c(e) µd−1(f)× n(f)

n′(e) +
∑

f∈c(e) n(f)

n0(e) = n(e)

nd(e) = n′(e) +
∑

f∈c(e)

nd−1(f)

pd(e) =
∑

f∈b(e)

nd(f)

46

5.3. Possible Adaptations of UCT to Transpositions

If the height of the partial game tree is bounded by h4, then there is no
difference between di = h and di = h + x for i ∈ {1, 2, 3} and x ∈ N. When
di is chosen sufficiently big, we write di =∞ to avoid the need to specify any
bound. Since the underlying graph of the game tree is acyclic, if h is a bound
on the height of an edge e then h− 1 is a bound on the height of any child of e,
therefore we can write the following equality which recalls equation 5.1.

µ∞(e) =
µ′(e)× n′(e) +

∑
f∈c(e) µ∞(f)× n(f)

n′(e) +
∑

f∈c(e) n(f)

The formulae proposed do not ensure that any playout will not account for
more than once in the values of nd(e) and pd(e). However a playout can only be
counted multiple times if there are transpositions in the subtree starting after
e. It is not clear to the authors how a transposition in the subtree of e should
affect the confidence in the adapted score of e. Thus, it is not clear whether
such playouts need to be accounted several times or just once. Admitting
several accounts gives rise to a simpler formula and was chosen for this reason.

We can now adapt formula 5.2 to use the adapted score and the adapted
exploration to give a value to a move. We define the adapted value of an
edge e with parameters (d1, d2, d3) ∈ N3 and exploration constant c to be

ud1,d2,d3(e) = µd1(e) + c ×
√

log pd2 (e)

nd3
(e) . The notation (d1, d2, d3) makes it easy

to express a few remarks about the framework.

• When no transposition occur in the game, such as when the board state
includes the move list, every parameterization gives rise to exactly the
same selection behavior which is also that of the plain UCT algorithm.

• The parameterization (0, 0, 0) is not the same as completely ignoring
transpositions since each position in the game appears only once in the
game tree when we use parameterization (0, 0, 0).

• The simple way (see section 5.2) can be obtained through the (1, 1, 1)
parameterization.

• The selection rules in [CBK08] can be obtained through our formalism:
UCT1 corresponds to parameterization (0, 0, 0), UCT2 is (1, 0, 0) and
UCT3 is (∞, 0, 0).

• It is possible to adapt the UCT value in almost the same way when the
results are stored in the nodes rather than in the edges but it would
not be possible to have a parameterization similar to any of d1, d2 or d3
equaling to zero.

4for instance if the game cannot last more than h move or if one node is created after each
playout and there will not be more than h playouts

47

5. TRANSPOSITIONS IN MCTS

75

80

85

90

95

100

0 1 2 3 4 5 6 7

S
co
re

d3

µ0
µ2
µ5
µ∞

Figure 5.4: LeftRight results.

5.4 Experimental results

Tests on LeftRight

LeftRight is an artificial one player game already used in [Caz09] under the
name “left move”, at each step the player is asked to chose to move Left or
to move Right ; after a given number of steps the score of the player is the
number of steps walked towards Left. A position is uniquely determined by the
number of steps made towards Left and the total number of moves played so
far, transitions are therefore very frequent5.

We used 300 moves long games for our tests. Each test was run 200 times
and the standard error is never over 0.3% on the following scores.

The UCT algorithm performs well at LeftRight so the number of simula-
tions had to be low enough to get any differentiating result. We decided to
run 100 playouts per move. The plain UCT algorithm without detection of
transpositions with an exploration constant of 0.3 performs 81.5 %, that is
in average 243.5 moves out of 300 were Left. We also tested the update-all
backpropagation algorithm which scored 77.7 %. We tested different values
for all three parameters but the scores almost did not evolve with d2 so for the
sake of clarity we present results with d2 set to 0 in figure 5.4.

The best score was 99.8% with the parameterization (∞, 0, 1) which basi-
cally means that in average less than one move was played to the Right in each
game. Setting d3 to 1 generally constituted a huge improvement. Raising d1
was consistently improving the score obtained, eventually culminating with
d1 =∞.

5if there are h steps the full game tree has only h×(h−1)
2

nodes if transpositions are recog-
nized but 2h nodes otherwise

48

5.5. Conclusion and Future Work

Tests on Hex

Hex is two-player zero sum game that cannot end in a draw. Every game will
end after at most a certain number of moves and can be labeled as a win
for Black or as a win for White. Rules and details about Hex can be found in
[Bro00]. Various board sizes are possible, sizes from 1 to 8 have been computer
solved [HAH09]. Transpositions happen frequently in Hex because a position
is completely defined by the sets of moves each player played, the particular
order that occurred before has no influence on the position. MCTS is quite
successful in Hex [CS09], hence Hex can serve as a good experimentation
ground to test our parametric algorithms.

Hex offers a strong advantage to the first player and it is common prac-
tice to balance a game with a compulsory mediocre first move6. We used a
size 5 board with an initial stone on b2. Each test was a 400 games match
between the parameterization to be tested and a standard AI In each test,
the standard AI played Black on 200 games and White on the remaining 200
games. The reported score designates the average number of games won by a
parameterization. The standard error was never over 2.5%.

The standard AI used the plain UCT algorithm with an exploration constant
of 0.3, it did not detect transpositions and it could perform 1 000 playouts
at each move. We also ran a similar 400 games match between the standard
AI and an implementation of the update-all backpropagation algorithm with
an exploration constant of 0.3 and 1 000 playouts per move. The update-all
algorithm scored 51.5% which means that it won 206 games out of 400. The
parameterization to be tested also used a 0.3 exploration constant and 1 000
playouts at each move. The results are presented in figure 5.5 for d2 set to 0
and in figure 5.6 for d2 set to 1.

The best score was 63.5% with the parameterization (0, 1, 2). It seems that
setting d1 as low as possible might improve the results, indeed with d1 = 0 the
scores were consistently over 53% while having d1 = 1 led to having scores
between 48% and 62%. Setting d1 = 0 is only possible when the payoffs are
stored per edge instead of per node as discussed in section 5.3.

5.5 Conclusion and Future Work

We have presented a parametric algorithm to deal with transpositions in MCTS.
Different parameters did improve on usual MCTS algorithms for two games:
LeftRight and Hex.

In this paper we did not deal with the graph history interaction problem
[KM04]. In some games the problem occurs and we might adapt the MCTS
algorithm to deal with it.

6Even more common is the swap rule or pie-rule.

49

5. TRANSPOSITIONS IN MCTS

40

42

44

46

48

50

52

54

56

58

60

62

0 1 2 3 4 5

S
co
re

d3

µ0
µ1
µ2
µ4

Figure 5.5: Hex results with d2 set to 0

40

45

50

55

60

65

0 1 2 3 4 5

S
co
re

d3

µ0
µ1
µ2
µ4

Figure 5.6: Hex results with d2 set to 1

We have defined a parameterized value for moves that integrates the
information provided by some relevant transpositions. The distributions of the
values for the available moves at some nodes do not necessarily correspond to
a UCT distribution. An interesting continuation of our work would be to define
an alternative parametric adapted score so that the arising distributions would
still correspond to UCT distributions.

Another possibility to take into account the information provided by the
transpositions is to treat them as contextual side information. This information
can be integrated in the value using the RAVE formula [GS07], or to use the
episode context framework described in [Ros10].

50

Bibliography

[ACBF02] Peter Auer, Nicoló Cesa-Bianchi, and Paul Fischer. Finite-time
analysis of the multiarmed bandit problem. Machine learning,
47(2):235–256, 2002.

[All88] Louis Victor Allis. A knowledge-based approach of connect-four
the game is solved: White wins. Masters thesis, Vrije Universitat
Amsterdam, Amsterdam, The Netherlands, October 1988.

[All94] Louis Victor Allis. Searching for Solutions in Games an Artificial
Intelligence. Phd thesis, Vrije Universitat Amsterdam, Maastricht,
1994.

[Ber79] Hans J. Berliner. The B* tree search algorithm: A best-first proof
procedure. Artificial Intelligence, 12(1):23–40, 1979.

[Bou01] Charles L. Bouton. Nim, a game with a complete mathematical
theory. Annals of Mathematics, 3(1):35–39, 1901.

[Bre98] Dennis Michel Breuker. Memory versus Search in Games. Phd
thesis, Universiteit Maastricht, 1998.

[Bro00] Cameron Browne. Hex Strategy: Making the Right Connections.
Natick, MA, 2000.

[Caz06] Tristan Cazenave. A Phantom-Go program. In Advances in Com-
puter Games 2005, volume 4250 of Lecture Notes in Computer
Science, pages 120–125. Springer, 2006.

[Caz07] Tristan Cazenave. Reflexive monte-carlo search. In Computer
Games Workshop, pages 165–173, Amsterdam, The Netherlands,
2007.

[Caz09] Tristan Cazenave. Nested monte-carlo search. In IJCAI, pages
456–461, 2009.

51

BIBLIOGRAPHY

[CBK08] Benjamen E. Childs, James H. Brodeur, and Levente Kocsis.
Transpositions and move groups in Monte Carlo Tree Search. In
CIG-08, pages 389–395, 2008.

[CCF+09] Guillaume Chaslot, Louis Chatriot, C. Fiter, Sylvain Gelly, Jean-
Baptiste Hoock, Julien Perez, Arpad Rimmel, and Olivier Tey-
taud. Combiner connaissances expertes, hors-ligne, transientes
et en ligne pour l’exploration Monte-Carlo. Apprentissage et MC.
Revue d’Intelligence Artificielle, 23(2-3):203–220, 2009.

[Clu07] James Clune. Heuristic evaluation functions for general game
playing. In AAAI, pages 1134–1139. AAAI Press, 2007.

[Cou06] Rémi Coulom. Efficient selectivity and back-up operators in
monte-carlo tree search. In Computers and Games 2006, Volume
4630 of LNCS, pages 72–83, Torino, Italy, 2006. Springer.

[Cou07] Rémi Coulom. Computing Elo ratings of move patterns in the
game of Go. ICGA Journal, 30(4):198–208, December 2007.

[CS09] Tristan Cazenave and Abdallah Saffidine. Utilisation de la re-
cherche arborescente Monte-Carlo au Hex. Revue d’Intelligence
Artificielle, 23(2-3):183–202, 2009.

[CS10] Tristan Cazenave and Abdallah Saffidine. Score bounded Monte-
Carlo tree search. In Computer and Games, 2010.

[FB08] Hilmar Finnsson and Yngvi Björnsson. Simulation-based ap-
proach to general game playing. In AAAI, pages 259–264, 2008.

[GL05] Michael Genesereth and Nathaniel Love. General game playing:
Overview of the aaai competition. AI Magazine, 26:62–72, 2005.

[GS07] Sylvain Gelly and David Silver. Combining online and offline
knowledge in UCT. In ICML, pages 273–280, 2007.

[GS08] Sylvain Gelly and David Silver. Achieving master level play in 9
x 9 computer go. In AAAI, pages 1537–1540, 2008.

[GST09] Martin Günther, Stephan Schiffel, and Michael Thielscher. Fac-
toring general games. In Proceedings of the IJCAI-09 Workshop
on General Game Playing (GIGA’09), pages 27–34, 2009.

[HAH09] Philip Henderson, Broderick Arneson, and Ryan B. Hayward.
Solving 8x8 Hex. In Craig Boutilier, editor, IJCAI, pages 505–510,
2009.

52

Bibliography

[HNR68] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal
basis for the heuristic determination of minimum cost paths.
IEEE Trans. Syst. Sci. Cybernet., 4(2):100–107, 1968.

[HPW09] David P. Helmbold and Aleatha Parker-Wood. All-moves-as-first
heuristics in monte-carlo go. In Olivas Arabnia, de la Fuente, ed-
itor, Proceedings of the 2009 International Conference on Artificial
Intelligence, pages 605–610, 2009.

[Hsu02] Feng-hsiung Hsu. Behind Deep Blue: Building the computer that
defeated the world chess champion. Princeton Univ Pr, 2002.

[KM04] Akihiro Kishimoto and Martin Müller. A general solution to the
graph history interaction problem. In AAAI, pages 644–649,
2004.

[Koz09] Tomáš Kozelek. Methods of MCTS and the game Arimaa. Mas-
ter’s thesis, Charles University in Prague, 2009.

[KS06] Levente Kocsis and Csaba Szepesvàri. Bandit based monte-carlo
planning. In ECML, volume 4212 of Lecture Notes in Computer
Science, pages 282–293. Springer, 2006.

[KSS91] D.B. Kemp, P.J. Stuckey, and D. Srivastava. Magic sets and
bottom-up evaluation of well-founded models. In Proceedings of
the 1991 Int. Symposium on Logic Programming, pages 337–351.
Citeseer, 1991.

[LDG+96] Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy,
and Jérôme Vouillon. The Objective Caml system. Software and
documentation available from http://pauillac. inria. fr/ocaml,
1996.

[LHG06] Nathaniel C. Love, Timothy L. Hinrichs, and Michael R. Gene-
sereth. General Game Playing: Game Description Language
specification. Technical report, Stanford University, 2006.

[Lor08] Richard J. Lorentz. Amazons discover monte-carlo. In Computers
and Games, pages 13–24, 2008.

[LS09] Yanhong A. Liu and Scott D. Stoller. From datalog rules to
efficient programs with time and space guarantees. ACM Trans.
Program. Lang. Syst., 31(6):1–38, 2009.

[Maa05] Thomas Maarup. Hex: Everything you always wanted to know
about Hex but were afraid to ask. Master’s thesis, Department
of Mathematics and Computer Science, University of Southern
Denmark, Odense, Denmark, 2005.

53

BIBLIOGRAPHY

[MC10] Jean Méhat and Tristan Cazenave. Combining UCT and nested
Monte-Carlo search for single-player general game playing. to
appear, 2010.

[MRVP09] Frédéric De Mesmay, Arpad Rimmel, Yevgen Voronenko, and
Markus Püschel. Bandit-based optimization on graphs with
application to library performance tuning. In Proceedings of
the 26th Annual International Conference on Machine Learning,
pages 729–736. ACM, 2009.

[NKM06] Xiaozhen Niu, Akihiro Kishimoto, and Martin Müller. Recogniz-
ing seki in computer go. In ACG, pages 88–103, 2006.

[QC07] Michel Quenault and Tristan Cazenave. Extended general gam-
ing model. In Computer Games Workshop 2007, pages 195–204,
June 2007.

[RN02] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach (2nd Edition). Prentice Hall, 2 edition, December
2002.

[Ros10] Christopher D. Rosin. Multi-armed bandits with episode context.
In Proceedings ISAIM, 2010.

[SBB+07] Jonathan Schaeffer, Neil Burch, Yngvi Björnsson, Akihiro Kishi-
moto, Martin Müller, Robert Lake, Paul Lu, and Steve Sutphen.
Checkers is solved. Science, 317(5844):1518, 2007.

[Sch01] Jonathan Schaeffer. A gamut of games. AI Magazine, 22(3):29–
46, 2001.

[SCM10] Abdallah Saffidine, Tristan Cazenave, and Jean Méhat. UCD :
Upper Confidence bound for rooted Directed acyclic graphs. In
International Workshop on Computer Games, 2010.

[She02] Brian Sheppard. World-championship-caliber scrabble. Artificial
Intelligence, 134(1-2):241 – 275, 2002.

[ST09] David Silver and Gerald Tesauro. Monte-Carlo simulation balanc-
ing. In Proceedings of the 26th Annual International Conference
on Machine Learning, pages 945–952. ACM, 2009.

[Stu02] Nathan Sturtevant. A comparison of algorithms for multi-player
games. In Computer and Games, 2002.

[SWvdH+08] Maarten P. D. Schadd, Mark H. M. Winands, H. Jaap van den
Herik, Guillaume Chaslot, and Jos W. H. M. Uiterwijk. Single-
player monte-carlo tree search. In Computers and Games, pages
1–12, 2008.

54

Bibliography

[Thi09] Michael Thielscher. Answer set programming for single-player
games in general game playing. In ICLP, pages 327–341, 2009.

[TL10] K. Tuncay Tekle and Yanhong A. Liu. Precise complexity analysis
for efficient Datalog queries. PPDP, Hagenberg, Austria, 2010.

[Wau09] Kevin Waugh. Faster state manipulation in general games using
generated code. In Proceedings of the IJCAI-09 Workshop on
General Game Playing (GIGA’09), 2009.

[WB09] Mark H. M. Winands and Yngvi Björnsson. Evaluation function
based Monte-Carlo LOA. In Advances in Computer Games, 2009.

[WBS08] Mark H. M. Winands, Yngvi Björnsson, and Jahn-Takeshi Saito.
Monte-carlo tree search solver. In Computers and Games, pages
25–36, 2008.

55

